
Best Practices

for Developing

SharePoint Web Parts

SPDEV370

Todd C. Bleeker, PhD.

Wednesday, 09:55AM-11:45AM

Simulcast Live

Note: Special lunch for attendees
will follow this session



About ME… Todd C. Bleeker, PhD MVP
CSA for English, Bleeker, and Associates

www.EBAcompanies.com

Instructor for Mindsharp

www.Mindsharp.com

DevelopersGuide.Mindsharp.com

tbleeker@mindsharp.com

facebook.com/toddbleeker

twitter.com/toddbleeker

SharePoint.MindsharpBlogs.com/Todd

Pictured here with youngest daughter Lexa



Agenda or Content Slide

 Poll of attendees expertise

 ABCs of Web Parts

 Standard SharePoint Development Lifecycle

 General Web Part Best Practices

 Demo: Visual Web Part



Your Experience



ABCs of Web Parts

 Appearance

 CSS

 HTML DOM

 Behavior

 JavaScript

 AJAX

 Connections

 Content

 SharePoint content database

 Corporate LOB systems

 External



01 • Start with a well-named VS.NET Library

02 • Sign or Strong Name the assembly

03 • Set values in the required XML files

04 • Strike <Ctrl-Shift-B> to build the solution output

05 • Slap the results into SharePoint

06 • Sharpen the logic and rendering

07 • Secure the assembly (if any) using CAS

08 • Supply a Solution deployment Manifest.xml

09 • Specify files to include in a Solution CAB

10 • Store/Deploy the Solution CAB

Standard Development Lifecycle



01 • Start with a well-named VS.NET Library

02 • Sign or Strong Name the assembly

03 • Set values in the required XML files

04 • Strike <Ctrl-Shift-B> to build the solution output

05 • Slap the results into SharePoint

06 • Sharpen the logic and rendering

07 • Secure the assembly (if any) using CAS

08 • Supply a Solution deployment Manifest.xml

09 • Specify files to include in a Solution CAB

10 • Store/Deploy the Solution CAB

Plumbing

Packaging

Standard Development Lifecycle



 Choose a Library Type:

 Blank Library

 Class Library

 Web Control Library

 VSeWSS Library

 STSDEV (Class) Library

 Other Community (CodePlex) Libraries

01

02

03

04

05

06

07

08

09

10

01
• Start with a well-named VS.NET Library

Plumbing



Choose a "Good" Name

 Meaningful

 Unique on the Internet

 CompanyProject.Contents.Category

 Used as default:

 Solution Name

 Project Name

 Folder Name

 Default Assembly Name

 Default Namespace Name

 Example

 Mindsharp.WebParts.Public

01

02

03

04

05

06

07

08

09

10



Library Pros and Cons
Factor Blank Web

Control Class VSeWSS

x86/x64 support?    

Useful defaults?    

Nothing to 

cleanup?    

Appropriate 

references?    

XCopy

deployment?    

WSP CAB 

generation?    

Customizable

post-build events?    

01

02

03

04

05

06

07

08

09

10



Library Pros and Cons
Factor Blank Web

Control Class VSeWSS

Development 

consistency?    

Foldering

flexibility?    

Multi-artifact

solutions?    

Upgradable to 

vNext?    

01

02

03

04

05

06

07

08

09

10



Start with a Class Library

 A Class Library:

 Works in all environments, today and tomorrow

 Can be used consistently for all development projects

 Supports both XCopy and WSP CAB deployment

 VSeWSS 1.3 brings significant improvements

 Adopt VS.NET 10 for SharePoint dev ASAP

 'Round the clock housekeeping required:

 Add reference to System.Web and WSS, if needed

 Rename class (auto-refactor code)

 Add required class constructors

 Don’t forget to scope added classes

01

02

03

04

05

06

07

08

09

10



Common Web Part Suffixes

 In the Project Root or Foo folder:

 Web Part Class: FooPart.cs

 wpcatalog folder:

 *.webpart File: FooPart.webpart

 wpresources folder:

 All external resources

 Also consider embedding WebResources

 TEMPLATE\CONTROLTEMPLATES folder:

 User Controls*: FooPartControl.ascx

01

02

03

04

05

06

07

08

09

10



General Project Organization

 Uncheck Create directory for solution

 Project folders only one level deep

 Solution project shells for asset projects

 Allows for mix and match

 Good for source management

 wpcatalog folder for *.webpart files

 wpresources folder for external resources

 script/image/etc folders for embedded resources

01

02

03

04

05

06

07

08

09

10



.NET Web Part vs. WSS Web Part

.NET Web Part

 Runs on any website

 Future of Web Part 
development

 No cross-page connections

 No connecting Web Parts 
that aren’t in zones

 No client-side connections

SharePoint Web Part

 Only runs on WSS sites

 Primarily available for 
backward compatibility

 Includes cross-page 
connections

 Allows connecting Web 
Parts that aren’t in zones

 Supports client-side 
connections

01

02

03

04

05

06

07

08

09

10



Inherit from .NET Web Part

 A .NET Web Part:

 Works in all environments, today and tomorrow

 Used consistently for all Web Part projects

 Works in all ASP.NET projects, not just SharePoint

 Housekeeping required:

 Derive from

System.Web.UI.WebControls.WebParts.WebPart

01

02

03

04

05

06

07

08

09

10



CreateChildControls

 Initially output DateTime.Now.ToString()

 Never use Render

 Never use RenderControl

 Rarely use RenderContents

01

02

03

04

05

06

07

08

09

10



 GAC rhymes with Flack, Hack, Sack, Smack, Whack;
but operations should dictate deployment location. 
So, the Web Part must be signed.

 Sign the assembly using VS.NET

 No Password on SNK files

 Compile to embed Public Key Token

 Never deploy to _app_bin (it's a Full-trust code gen 
folder) SharePoint Designer won't find it there either

01

02

03

04

05

06

07

08

09

10

02
• Sign or Strong Name the assembly

Plumbing



The GAC Isn’t Crap

 First place the .NET Framework looks

 Pre-checked for tampering

 Can run multiple Version + Culture + 
PublicKeyToken versions of an assembly

 Always participates in CAS

 Always runs under Full Trust (pros and cons)

 Cached: Runs a shadow copy of the assembly (No 
DLL hell)

 IISRESET required to change

01

02

03

04

05

06

07

08

09

10



BIN rhymes with WIN

 Configured to run under WSS_Minimal Trust

 No need to recycle the Application Pool if the 
assembly is deployed to the bin

 Fastest iterative approach

 Code

 Compile

 Refresh

 If your signed assembly runs in the BIN,
it will likely run in the GAC,
the opposite is not true (typically due to CAS)

01

02

03

04

05

06

07

08

09

10



Setup Get Public Key Option

 Tools > External Tools…

 Click the Add button

 Title: Get &Public Key

 VS.NET 2005 Command: C:\Program Files\
Microsoft Visual Studio 8\SDK\v2.0\Bin\sn.exe

 VS.NET 2008 Command: C:\Program Files\
Microsoft SDKs\Windows\v6.0A\Bin\sn.exe

 Arguments: -Tp "$(TargetPath)"

 Select User Output Window checkbox

 Click the OK button to save

 Ensure project has focus before selecting option

01

02

03

04

05

06

07

08

09

10



Signing Best Practices

 Move SNK to Properties folder

 Inspect/Alter AssemblyInfo Class

 Chevy Chase Look to eliminate dynamic versioning: 
Version 1.0.*

 Set assembly directive (Yikes!):

System.Security.AllowPartiallyTrustedCallers()

01

02

03

04

05

06

07

08

09

10



SNK Management Options

 Developer

 Each developer has their own key

 Embed the key in VS.NET for development

 Delay Signing

 Project

 Each project has their own key

 Keys in development cannot be use in Production

 All code runs thru gatekeeper for deployment

 Setup a handful of permutations representing 
common CAS levels that developers can assign

01

02

03

04

05

06

07

08

09

10



 In addition to the class, *.webpart is required

 Use 12 Hive to Organize

 Exposes Web Part to SharePoint

 importErrorMessage required Title not required

 AllowClose to False

 CatalogIconImageUrl

 Be sure to use the correct PublicKeyToken

 Assembly on five lines, Properties on one line

01

02

03

04

05

06

07

08

09

10

03
• Set values in the required XML files

Plumbing



Use 12 Hive to Organize

 Flexible folder structure – a place for everything 
and everything in its place

 Easier to deploy (both XCopy and CAB)

 Anticipate others placement of project assets

 Supports the creation of large, complex solutions

 Interfaces with community tools

01

02

03

04

05

06

07

08

09

10



 XCopy deploy using one of the following:

 Post-build events

 Targets file

 SDK deployment files

 Use MakeCab for creating WSP CAB

 Manifest.xml

 WSP.ddf

 SafeControl entry required for Web Part assembly

01

02

03

04

05

06

07

08

09

10

04
• Strike <Ctrl-Shift-B> to build the solution

Plumbing



CAB Project vs. MakeCab.exe

CAB

 VS.NET Project Type

 Assets from projects can be 
tagged for inclusion

 Can only be used for Web 
Part projects

 Only outputs CAB

 No predefined limit

MakeCab.exe

 Command line tool

 Assets must be identified by 
name

 Used for all projects, 
including Web Parts

 Outputs CAB or WSP

 Defaults to 360K

01

02

03

04

05

06

07

08

09

10



Post Build vs. Targets

Post Build

 Developer environment

 Simple: Nine commands

 Easy to modify on the fly

 Defined in the project file

 May need to REM out 
before check-in

Targets

 Build environment

 Complex implementation

 Requires planning

 Defined in its own file

 Rarely modified

01

02

03

04

05

06

07

08

09

10



XCopy Commands

 For developers only, simple commands:
:: Change directory to the root of the project

cd "$(ProjectDir)"

:: Recycle the application pool

%systemroot%\system32\iisapp.vbs /a "SharePointAppPool" /r

:: Copy all files from the project's 12 folder to 12 Hive

xcopy "12" "%CommonProgramFiles%\Microsoft Shared\
web server extensions\12\" /ys

:: Copy all files from the project's 80 folder to Web Application home directory

xcopy "80" "C:\Inetpub\wwwroot\wss\VirtualDirectories\[Site]\" /ys

01

02

03

04

05

06

07

08

09

10



XCopy Commands

 Continued:
:: Copy DLLs to the BIN

xcopy "$(TargetDir)*.dll" 
"C:\Inetpub\wwwroot\wss\VirtualDirectories\[Site]\bin\" /ys

:: Install Force DLLs to the GAC (VS.NET 2005)

"%ProgramFiles%\Microsoft Visual Studio 8\SDK\v2.0\Bin\GacUtil.exe" /if 
"$(TargetPath)"

:: Install Force DLLs to the GAC (VS.NET 2008)

"%ProgramFiles%\Microsoft SDKs\Windows\v6.0A\Bin\GacUtil.exe" /if 
"$(TargetPath)"

:: Create a WSP CAB

MakeCAB /f "WSP.DDF"

01

02

03

04

05

06

07

08

09

10



Install WSPBuilder!

 Install WSPBuilder into your environment, TODAY

01

02

03

04

05

06

07

08

09

10



 Plumb the Web Part with a bare bones initial 
solution (output DateTime)

 New Up the Web Part

 Web Application wpcatalog (Solution) vs. Site 
Collection Web Part Gallery (Solution/Feature)

 Install/Activate Feature

 Add the Web Part to a test page

05
• Slap the results into SharePoint

Plumbing 01

02

03

04

05

06

07

08

09

10



 Two schools of thought on overriding methods

 Page = Proxy Methods

 Part = Direct Methods

 Update CreateChildControls()

 Add OnInit()

 Add OnLoad()

 Add OnPreRender()

 Add RenderContents()

01

02

03

04

05

06

07

08

09

10

06
• Sharpen the logic and rendering

Sharpen the Logic and Rendering



Web Part Life Cycle 01

02

03

04

05

06

07

08

09

10



OnInit

 Use to initialize objects that would live for
the duration of the life cycle

 Setup connection strings

 Page is not yet available

 Check for IsPostback and IsCallback

 Redirect forced move to OnPreRender

01

02

03

04

05

06

07

08

09

10



OnLoad

 Query the database (asynchronously is ideal)

 Load Datasets

 Use ClientScriptManager to inject external and 
embedded CSS and JavaScript

 Check for IsPostback and IsCallback

 Again, redirect forced move to OnPreRender

01

02

03

04

05

06

07

08

09

10



CreateChildControls

 Create User Interface structure as Server Control

 Four "Eye"s:

 Instantiate

 Initialize

 wIre-up

 Insert (Add)

 Create Visual Web Parts by moving the UI to a
User Control and use .NETs LoadControl()

 May be called out of sequence using 
EnsureChildControls()

01

02

03

04

05

06

07

08

09

10



User Control vs. Server Control
Factor User Control Server Control

Documented in WSS SDK?  

Great Intellisense?  

WYSIWYG Editing?  

Manipulate programmatically?  

Organize project using 12 Hive?  

Easy to consume in Web Part?  

01

02

03

04

05

06

07

08

09

10



User Control vs. Server Control
Factor User Control Server Control

Easy for the junior dev?  

Can be debugged?  

FindControl unnecessary?  

In Custom folder?  

More than one can be used?  

01

02

03

04

05

06

07

08

09

10



Visual Web Parts

 Whenever possible, move your user interface to a 
User Control

 User Control's code beside and designer classes
are compiled into the Web Part's DLL

 Create strongly typed variable to the User Control
within the Web Part

 Create strongly typed variable to the Web Part
within the User Control

01

02

03

04

05

06

07

08

09

10



Add VS.NET Web Item Templates

 Add the following to your *.csproj file:

 Add the following to your *.vbproj file:

01

02

03

04

05

06

07

08

09

10

<ProjectTypeGuids>{349c5851-65df-11da-9384-00065b846f21};

{fae04ec0-301f-11d3-bf4b-00c04f79efbc}</ProjectTypeGuids>

<ProjectTypeGuids>{349c5851-65df-11da-9384-00065b846f21};

{f184b08f-c81c-45f6-a57f-5abd9991f28f}</ProjectTypeGuids>



OnPreRender

 Last Opportunity to influence the View State that
will be sent to the client

 Move OnInit and OnLoad code to this event when
the code may be run unnecessarily

01

02

03

04

05

06

07

08

09

10



RenderContents

 Only use RenderContents to update user interface 
for programmatically set properties

 The base class essentially calls:

 EnsureChildControls()

 RenderChildren()

01

02

03

04

05

06

07

08

09

10



 Similar to User Access Security

 This is a matter of TRUST

 Most attacks come from within

 For Web Part CAS details, see
http://tinyurl.com/SharePointCAS

01

02

03

04

05

06

07

08

09

10

07
• Secure the assembly using CAS

Secure the Web Part using CAS



 CAS IS NOT HARD

CAS IS NOT HARD

CAS IS NOT HARD

CAS IS NOT HARD

CAS IS NOT HARD

CAS IS NOT HARD

CAS IS NOT HARD

Code Access Security 01

02

03

04

05

06

07

08

09

10



Code Access Security

 Use CAS it IS NOT HARD

 Test Web Parts using Anonymous and Readers

 Add to or create a custom CAS policy; 
Consider implementing half a dozen permutations

 Deploy CAS using a WSP CAB

 Use .NET Framework 2.0 Configuration Wizard to 
generate:

 SecurityClass (Condition, Permission, and Construct)

 NamedPermissionSet

 CodeGroup

01

02

03

04

05

06

07

08

09

10



 Use community tools like WSPBuilder to generate 
the Manifest.xml and WSP.ddf

 ALWAYS use a WSP Solution CAB for deployment 
into production

 For packaging details, see other talks this week

01

02

03

04

05

06

07

08

09

10

08
• Supply a Solution deployment Manifest.xml

Packaging

09
• Specify files to include in a Solution CAB

10
• Store/Deploy the Solution CAB



Solution Deployment

 Add a Manifest.xml file to the VS.NET project

 Provide an inventory of files that will be in the CAB

 Maximize use of the RootFiles tag

 Utilize the DwpFiles tag for *.webpart files

01

02

03

04

05

06

07

08

09

10



Web Part Features

 Pros for Web Part Features

 Only way to "group" Web Part in Add dialog

 Only way to permission Web Parts

 May be activated by end users on decentralized Site 
Collections rather than centrally on Web Applications

 Cons for Web Part Features

 Orphaned in Web Part Gallery on deactivation

 Must be activated by end users on decentralized Site 
Collections rather than centrally on Web Applications



Avoid Web Part Features*

 Only need a WSP CAB , not a Feature, to deploy a 
custom Web Part

 Feature is a tremendous overhead to provide the 
three pros listed on the previous slide

*This is a minority opinion



Use Web Part Properties

 State Management

 Finite Presentation/Validation

 String (textbox)

 Integer (textbox)

 DateTime (textbox not calendar)

 Boolean (checkbox)

 Color (dropdown list)

 Enumeration (dropdown list)

 Property Builders

 Personalization Management

 Categories



Use Editor Parts

 Validate User Input

 Abstraction Layer

 Custom User Interface Presentation

 Password

 Calendar

 Dependant Lists



Use Web Part Connections

 Custom Interface

 IWebPartTable

 IWebPartRow*

 IWebPartCell

 IWebPartFilter

 Give each connection a unique ID, don’t use the 
default ID called "Default"

 Leverage Transformers

*Most Transformable



Test, Test, Test Web Parts

 Anonymous and Reader Users

 Code Access Security (CAS)

 Test Connections

 Check out the details for how to test these in this 
MSDN article:

msdn.microsoft.com/en-us/library/ms916830.aspx

www.21apps.com/agile/
beginners-guide-to-test-driven-web-part-
development/



Other Considerations

 Verbs = Embedded functionality

 Web Part Cache - Who doesn’t love cache

 Can substantially improve performance

 Use for non-volatile, frequently accessed, finite data that can 
easily fit into memory

 Call EnsureChildControls() before using child controls

 Customization (shared) vs. Personalization (individual)

 Use Properties to avoid hard coded values

 HTMLEncode everything that the user enters when you 
render it out to prevent script/SQL injection hacks



Other Considerations

 Don't build your entire application in a single Web 
Part

 Do build solutions that can be added to SharePoint 
nearly anywhere



Want More?

 Get your SharePoint project OnPath™
with Mindsharp’s unique educational approach

 Get Todd’s SharePoint v3 (2007) Developer 
Training:
http://www.Mindsharp.com/?top=TRAINING

 Get Todd’s SharePoint Developer book:
http://www.amazon.com/dp/1584505001

http://www.mindsharp.com/?top=TRAINING
http://www.amazon.com/dp/1584505001


VISUAL WEB PART

Use a User Control as a strongly typed, 
tightly coupled design surface that manages 
the user interface (UI) for your Web Part

DEMO



Thank you for attending!

Please fill out your evaluation and 
turn it in on the back table!


