
Best Practices

for Developing

SharePoint Web Parts

SPDEV370

Todd C. Bleeker, PhD.

Wednesday, 09:55AM-11:45AM

Simulcast Live

Note: Special lunch for attendees
will follow this session

About ME… Todd C. Bleeker, PhD MVP
CSA for English, Bleeker, and Associates

www.EBAcompanies.com

Instructor for Mindsharp

www.Mindsharp.com

DevelopersGuide.Mindsharp.com

tbleeker@mindsharp.com

facebook.com/toddbleeker

twitter.com/toddbleeker

SharePoint.MindsharpBlogs.com/Todd

Pictured here with youngest daughter Lexa

Agenda or Content Slide

 Poll of attendees expertise

 ABCs of Web Parts

 Standard SharePoint Development Lifecycle

 General Web Part Best Practices

 Demo: Visual Web Part

Your Experience

ABCs of Web Parts

 Appearance

 CSS

 HTML DOM

 Behavior

 JavaScript

 AJAX

 Connections

 Content

 SharePoint content database

 Corporate LOB systems

 External

01 • Start with a well-named VS.NET Library

02 • Sign or Strong Name the assembly

03 • Set values in the required XML files

04 • Strike <Ctrl-Shift-B> to build the solution output

05 • Slap the results into SharePoint

06 • Sharpen the logic and rendering

07 • Secure the assembly (if any) using CAS

08 • Supply a Solution deployment Manifest.xml

09 • Specify files to include in a Solution CAB

10 • Store/Deploy the Solution CAB

Standard Development Lifecycle

01 • Start with a well-named VS.NET Library

02 • Sign or Strong Name the assembly

03 • Set values in the required XML files

04 • Strike <Ctrl-Shift-B> to build the solution output

05 • Slap the results into SharePoint

06 • Sharpen the logic and rendering

07 • Secure the assembly (if any) using CAS

08 • Supply a Solution deployment Manifest.xml

09 • Specify files to include in a Solution CAB

10 • Store/Deploy the Solution CAB

Plumbing

Packaging

Standard Development Lifecycle

 Choose a Library Type:

 Blank Library

 Class Library

 Web Control Library

 VSeWSS Library

 STSDEV (Class) Library

 Other Community (CodePlex) Libraries

01

02

03

04

05

06

07

08

09

10

01
• Start with a well-named VS.NET Library

Plumbing

Choose a "Good" Name

 Meaningful

 Unique on the Internet

 CompanyProject.Contents.Category

 Used as default:

 Solution Name

 Project Name

 Folder Name

 Default Assembly Name

 Default Namespace Name

 Example

 Mindsharp.WebParts.Public

01

02

03

04

05

06

07

08

09

10

Library Pros and Cons
Factor Blank Web

Control Class VSeWSS

x86/x64 support?

Useful defaults?

Nothing to

cleanup?

Appropriate

references?

XCopy

deployment?

WSP CAB

generation?

Customizable

post-build events?

01

02

03

04

05

06

07

08

09

10

Library Pros and Cons
Factor Blank Web

Control Class VSeWSS

Development

consistency?

Foldering

flexibility?

Multi-artifact

solutions?

Upgradable to

vNext?

01

02

03

04

05

06

07

08

09

10

Start with a Class Library

 A Class Library:

 Works in all environments, today and tomorrow

 Can be used consistently for all development projects

 Supports both XCopy and WSP CAB deployment

 VSeWSS 1.3 brings significant improvements

 Adopt VS.NET 10 for SharePoint dev ASAP

 'Round the clock housekeeping required:

 Add reference to System.Web and WSS, if needed

 Rename class (auto-refactor code)

 Add required class constructors

 Don’t forget to scope added classes

01

02

03

04

05

06

07

08

09

10

Common Web Part Suffixes

 In the Project Root or Foo folder:

 Web Part Class: FooPart.cs

 wpcatalog folder:

 *.webpart File: FooPart.webpart

 wpresources folder:

 All external resources

 Also consider embedding WebResources

 TEMPLATE\CONTROLTEMPLATES folder:

 User Controls*: FooPartControl.ascx

01

02

03

04

05

06

07

08

09

10

General Project Organization

 Uncheck Create directory for solution

 Project folders only one level deep

 Solution project shells for asset projects

 Allows for mix and match

 Good for source management

 wpcatalog folder for *.webpart files

 wpresources folder for external resources

 script/image/etc folders for embedded resources

01

02

03

04

05

06

07

08

09

10

.NET Web Part vs. WSS Web Part

.NET Web Part

 Runs on any website

 Future of Web Part
development

 No cross-page connections

 No connecting Web Parts
that aren’t in zones

 No client-side connections

SharePoint Web Part

 Only runs on WSS sites

 Primarily available for
backward compatibility

 Includes cross-page
connections

 Allows connecting Web
Parts that aren’t in zones

 Supports client-side
connections

01

02

03

04

05

06

07

08

09

10

Inherit from .NET Web Part

 A .NET Web Part:

 Works in all environments, today and tomorrow

 Used consistently for all Web Part projects

 Works in all ASP.NET projects, not just SharePoint

 Housekeeping required:

 Derive from

System.Web.UI.WebControls.WebParts.WebPart

01

02

03

04

05

06

07

08

09

10

CreateChildControls

 Initially output DateTime.Now.ToString()

 Never use Render

 Never use RenderControl

 Rarely use RenderContents

01

02

03

04

05

06

07

08

09

10

 GAC rhymes with Flack, Hack, Sack, Smack, Whack;
but operations should dictate deployment location.
So, the Web Part must be signed.

 Sign the assembly using VS.NET

 No Password on SNK files

 Compile to embed Public Key Token

 Never deploy to _app_bin (it's a Full-trust code gen
folder) SharePoint Designer won't find it there either

01

02

03

04

05

06

07

08

09

10

02
• Sign or Strong Name the assembly

Plumbing

The GAC Isn’t Crap

 First place the .NET Framework looks

 Pre-checked for tampering

 Can run multiple Version + Culture +
PublicKeyToken versions of an assembly

 Always participates in CAS

 Always runs under Full Trust (pros and cons)

 Cached: Runs a shadow copy of the assembly (No
DLL hell)

 IISRESET required to change

01

02

03

04

05

06

07

08

09

10

BIN rhymes with WIN

 Configured to run under WSS_Minimal Trust

 No need to recycle the Application Pool if the
assembly is deployed to the bin

 Fastest iterative approach

 Code

 Compile

 Refresh

 If your signed assembly runs in the BIN,
it will likely run in the GAC,
the opposite is not true (typically due to CAS)

01

02

03

04

05

06

07

08

09

10

Setup Get Public Key Option

 Tools > External Tools…

 Click the Add button

 Title: Get &Public Key

 VS.NET 2005 Command: C:\Program Files\
Microsoft Visual Studio 8\SDK\v2.0\Bin\sn.exe

 VS.NET 2008 Command: C:\Program Files\
Microsoft SDKs\Windows\v6.0A\Bin\sn.exe

 Arguments: -Tp "$(TargetPath)"

 Select User Output Window checkbox

 Click the OK button to save

 Ensure project has focus before selecting option

01

02

03

04

05

06

07

08

09

10

Signing Best Practices

 Move SNK to Properties folder

 Inspect/Alter AssemblyInfo Class

 Chevy Chase Look to eliminate dynamic versioning:
Version 1.0.*

 Set assembly directive (Yikes!):

System.Security.AllowPartiallyTrustedCallers()

01

02

03

04

05

06

07

08

09

10

SNK Management Options

 Developer

 Each developer has their own key

 Embed the key in VS.NET for development

 Delay Signing

 Project

 Each project has their own key

 Keys in development cannot be use in Production

 All code runs thru gatekeeper for deployment

 Setup a handful of permutations representing
common CAS levels that developers can assign

01

02

03

04

05

06

07

08

09

10

 In addition to the class, *.webpart is required

 Use 12 Hive to Organize

 Exposes Web Part to SharePoint

 importErrorMessage required Title not required

 AllowClose to False

 CatalogIconImageUrl

 Be sure to use the correct PublicKeyToken

 Assembly on five lines, Properties on one line

01

02

03

04

05

06

07

08

09

10

03
• Set values in the required XML files

Plumbing

Use 12 Hive to Organize

 Flexible folder structure – a place for everything
and everything in its place

 Easier to deploy (both XCopy and CAB)

 Anticipate others placement of project assets

 Supports the creation of large, complex solutions

 Interfaces with community tools

01

02

03

04

05

06

07

08

09

10

 XCopy deploy using one of the following:

 Post-build events

 Targets file

 SDK deployment files

 Use MakeCab for creating WSP CAB

 Manifest.xml

 WSP.ddf

 SafeControl entry required for Web Part assembly

01

02

03

04

05

06

07

08

09

10

04
• Strike <Ctrl-Shift-B> to build the solution

Plumbing

CAB Project vs. MakeCab.exe

CAB

 VS.NET Project Type

 Assets from projects can be
tagged for inclusion

 Can only be used for Web
Part projects

 Only outputs CAB

 No predefined limit

MakeCab.exe

 Command line tool

 Assets must be identified by
name

 Used for all projects,
including Web Parts

 Outputs CAB or WSP

 Defaults to 360K

01

02

03

04

05

06

07

08

09

10

Post Build vs. Targets

Post Build

 Developer environment

 Simple: Nine commands

 Easy to modify on the fly

 Defined in the project file

 May need to REM out
before check-in

Targets

 Build environment

 Complex implementation

 Requires planning

 Defined in its own file

 Rarely modified

01

02

03

04

05

06

07

08

09

10

XCopy Commands

 For developers only, simple commands:
:: Change directory to the root of the project

cd "$(ProjectDir)"

:: Recycle the application pool

%systemroot%\system32\iisapp.vbs /a "SharePointAppPool" /r

:: Copy all files from the project's 12 folder to 12 Hive

xcopy "12" "%CommonProgramFiles%\Microsoft Shared\
web server extensions\12\" /ys

:: Copy all files from the project's 80 folder to Web Application home directory

xcopy "80" "C:\Inetpub\wwwroot\wss\VirtualDirectories\[Site]\" /ys

01

02

03

04

05

06

07

08

09

10

XCopy Commands

 Continued:
:: Copy DLLs to the BIN

xcopy "$(TargetDir)*.dll"
"C:\Inetpub\wwwroot\wss\VirtualDirectories\[Site]\bin\" /ys

:: Install Force DLLs to the GAC (VS.NET 2005)

"%ProgramFiles%\Microsoft Visual Studio 8\SDK\v2.0\Bin\GacUtil.exe" /if
"$(TargetPath)"

:: Install Force DLLs to the GAC (VS.NET 2008)

"%ProgramFiles%\Microsoft SDKs\Windows\v6.0A\Bin\GacUtil.exe" /if
"$(TargetPath)"

:: Create a WSP CAB

MakeCAB /f "WSP.DDF"

01

02

03

04

05

06

07

08

09

10

Install WSPBuilder!

 Install WSPBuilder into your environment, TODAY

01

02

03

04

05

06

07

08

09

10

 Plumb the Web Part with a bare bones initial
solution (output DateTime)

 New Up the Web Part

 Web Application wpcatalog (Solution) vs. Site
Collection Web Part Gallery (Solution/Feature)

 Install/Activate Feature

 Add the Web Part to a test page

05
• Slap the results into SharePoint

Plumbing 01

02

03

04

05

06

07

08

09

10

 Two schools of thought on overriding methods

 Page = Proxy Methods

 Part = Direct Methods

 Update CreateChildControls()

 Add OnInit()

 Add OnLoad()

 Add OnPreRender()

 Add RenderContents()

01

02

03

04

05

06

07

08

09

10

06
• Sharpen the logic and rendering

Sharpen the Logic and Rendering

Web Part Life Cycle 01

02

03

04

05

06

07

08

09

10

OnInit

 Use to initialize objects that would live for
the duration of the life cycle

 Setup connection strings

 Page is not yet available

 Check for IsPostback and IsCallback

 Redirect forced move to OnPreRender

01

02

03

04

05

06

07

08

09

10

OnLoad

 Query the database (asynchronously is ideal)

 Load Datasets

 Use ClientScriptManager to inject external and
embedded CSS and JavaScript

 Check for IsPostback and IsCallback

 Again, redirect forced move to OnPreRender

01

02

03

04

05

06

07

08

09

10

CreateChildControls

 Create User Interface structure as Server Control

 Four "Eye"s:

 Instantiate

 Initialize

 wIre-up

 Insert (Add)

 Create Visual Web Parts by moving the UI to a
User Control and use .NETs LoadControl()

 May be called out of sequence using
EnsureChildControls()

01

02

03

04

05

06

07

08

09

10

User Control vs. Server Control
Factor User Control Server Control

Documented in WSS SDK?

Great Intellisense?

WYSIWYG Editing?

Manipulate programmatically?

Organize project using 12 Hive?

Easy to consume in Web Part?

01

02

03

04

05

06

07

08

09

10

User Control vs. Server Control
Factor User Control Server Control

Easy for the junior dev?

Can be debugged?

FindControl unnecessary?

In Custom folder?

More than one can be used?

01

02

03

04

05

06

07

08

09

10

Visual Web Parts

 Whenever possible, move your user interface to a
User Control

 User Control's code beside and designer classes
are compiled into the Web Part's DLL

 Create strongly typed variable to the User Control
within the Web Part

 Create strongly typed variable to the Web Part
within the User Control

01

02

03

04

05

06

07

08

09

10

Add VS.NET Web Item Templates

 Add the following to your *.csproj file:

 Add the following to your *.vbproj file:

01

02

03

04

05

06

07

08

09

10

<ProjectTypeGuids>{349c5851-65df-11da-9384-00065b846f21};

{fae04ec0-301f-11d3-bf4b-00c04f79efbc}</ProjectTypeGuids>

<ProjectTypeGuids>{349c5851-65df-11da-9384-00065b846f21};

{f184b08f-c81c-45f6-a57f-5abd9991f28f}</ProjectTypeGuids>

OnPreRender

 Last Opportunity to influence the View State that
will be sent to the client

 Move OnInit and OnLoad code to this event when
the code may be run unnecessarily

01

02

03

04

05

06

07

08

09

10

RenderContents

 Only use RenderContents to update user interface
for programmatically set properties

 The base class essentially calls:

 EnsureChildControls()

 RenderChildren()

01

02

03

04

05

06

07

08

09

10

 Similar to User Access Security

 This is a matter of TRUST

 Most attacks come from within

 For Web Part CAS details, see
http://tinyurl.com/SharePointCAS

01

02

03

04

05

06

07

08

09

10

07
• Secure the assembly using CAS

Secure the Web Part using CAS

 CAS IS NOT HARD

CAS IS NOT HARD

CAS IS NOT HARD

CAS IS NOT HARD

CAS IS NOT HARD

CAS IS NOT HARD

CAS IS NOT HARD

Code Access Security 01

02

03

04

05

06

07

08

09

10

Code Access Security

 Use CAS it IS NOT HARD

 Test Web Parts using Anonymous and Readers

 Add to or create a custom CAS policy;
Consider implementing half a dozen permutations

 Deploy CAS using a WSP CAB

 Use .NET Framework 2.0 Configuration Wizard to
generate:

 SecurityClass (Condition, Permission, and Construct)

 NamedPermissionSet

 CodeGroup

01

02

03

04

05

06

07

08

09

10

 Use community tools like WSPBuilder to generate
the Manifest.xml and WSP.ddf

 ALWAYS use a WSP Solution CAB for deployment
into production

 For packaging details, see other talks this week

01

02

03

04

05

06

07

08

09

10

08
• Supply a Solution deployment Manifest.xml

Packaging

09
• Specify files to include in a Solution CAB

10
• Store/Deploy the Solution CAB

Solution Deployment

 Add a Manifest.xml file to the VS.NET project

 Provide an inventory of files that will be in the CAB

 Maximize use of the RootFiles tag

 Utilize the DwpFiles tag for *.webpart files

01

02

03

04

05

06

07

08

09

10

Web Part Features

 Pros for Web Part Features

 Only way to "group" Web Part in Add dialog

 Only way to permission Web Parts

 May be activated by end users on decentralized Site
Collections rather than centrally on Web Applications

 Cons for Web Part Features

 Orphaned in Web Part Gallery on deactivation

 Must be activated by end users on decentralized Site
Collections rather than centrally on Web Applications

Avoid Web Part Features*

 Only need a WSP CAB , not a Feature, to deploy a
custom Web Part

 Feature is a tremendous overhead to provide the
three pros listed on the previous slide

*This is a minority opinion

Use Web Part Properties

 State Management

 Finite Presentation/Validation

 String (textbox)

 Integer (textbox)

 DateTime (textbox not calendar)

 Boolean (checkbox)

 Color (dropdown list)

 Enumeration (dropdown list)

 Property Builders

 Personalization Management

 Categories

Use Editor Parts

 Validate User Input

 Abstraction Layer

 Custom User Interface Presentation

 Password

 Calendar

 Dependant Lists

Use Web Part Connections

 Custom Interface

 IWebPartTable

 IWebPartRow*

 IWebPartCell

 IWebPartFilter

 Give each connection a unique ID, don’t use the
default ID called "Default"

 Leverage Transformers

*Most Transformable

Test, Test, Test Web Parts

 Anonymous and Reader Users

 Code Access Security (CAS)

 Test Connections

 Check out the details for how to test these in this
MSDN article:

msdn.microsoft.com/en-us/library/ms916830.aspx

www.21apps.com/agile/
beginners-guide-to-test-driven-web-part-
development/

Other Considerations

 Verbs = Embedded functionality

 Web Part Cache - Who doesn’t love cache

 Can substantially improve performance

 Use for non-volatile, frequently accessed, finite data that can
easily fit into memory

 Call EnsureChildControls() before using child controls

 Customization (shared) vs. Personalization (individual)

 Use Properties to avoid hard coded values

 HTMLEncode everything that the user enters when you
render it out to prevent script/SQL injection hacks

Other Considerations

 Don't build your entire application in a single Web
Part

 Do build solutions that can be added to SharePoint
nearly anywhere

Want More?

 Get your SharePoint project OnPath™
with Mindsharp’s unique educational approach

 Get Todd’s SharePoint v3 (2007) Developer
Training:
http://www.Mindsharp.com/?top=TRAINING

 Get Todd’s SharePoint Developer book:
http://www.amazon.com/dp/1584505001

http://www.mindsharp.com/?top=TRAINING
http://www.amazon.com/dp/1584505001

VISUAL WEB PART

Use a User Control as a strongly typed,
tightly coupled design surface that manages
the user interface (UI) for your Web Part

DEMO

Thank you for attending!

Please fill out your evaluation and
turn it in on the back table!

